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1 Introduction

The overarching topic of this seminar is studying statistical mechanical systems, with a goal of
looking towards neural networks. This talk aims to be an introduction to studying statistical
mechanical systems in their thermodynamic limit (N → ∞) as field theories. Statistical field
theory (SFT) [Mus20, Sha17] deals with the behaviour or classical or quantum systems consisting
of an enormous number of degrees of freedom, systems that have different phases, and we aim to
study primarily the phase transitions between then, and primarily what happens at the critical
points these transitions occur.

We will be using the Ising Model as our pathfinder through this story from Statistical Mechanics
to Conformal Field Theory, which is a type of statistical field theory where the theory may be solved
exactly. There are several reasons to choose the Ising Model, namely is that is demonstrates the
features of phase transitions, while having simple Boolean degrees of freedom si = ±1 defined on
a lattice, and that the model may be solved exactly in the d = 1 and d = 2 dimensions.

Using the path integral formulation of quantum mechanics, as the lattice spacing of the 2D Ising
model goes to zero, one can quantum field theory (QFT). Indeed, we will see that slightly away from
the critical temperature Tc and in the absence of an externel magnetic field, the two-dimensional
Ising model is equivalent to a fermionic neutral particle (Majorana fermion) that satisfies a Dirac
equation. The main advantage of QFT is that it embodies a strong set of contrains coming from
the compatibility of quantum mechanics with special relativity, which turns into general relations
such as the completeness relation of multiparticle states or the unitarity of their scatttering process.
These general properties make QFT help us understand the underlying aspect of phase transitions
that may appear mysterious in the discete formulation of the statistical model.

At the critical points of interest, the QFT’s are scale invariant and the correlation length ξ will
diverge, and such theories are invariant under a larger symmetry group, which we will see is the
conformal group: the set of geometric transformations that implement the scaling of the length of
the vectors while preserving their relative angle. Quantum field theories that are invariant under
conformal transformations are called conformal field theories (CFTs) [Rid13, PDF97]. In two
dimensions, the conformal transformations coincide with the mappings by analytic functions of a
complex variable, characterised by an infinite dimensional algebra known as the Virasoro algebra
Vir. This enables us to determine the exact expressions of the correlation functions of by solving
certain differential equations. Using these tools from CFT, our primary goal of these talks is to
build towards computing the correlation functions for the 2D Ising Model at the critical point, but
you can see [Ger21] for spoilers.

Its worth mentioning that away from the critical points, the quantum field theories are, in
general, quite massive, and analysis is often carried out through perturbation approaches. There are
some favourable cases that give rise to integrable models, but we won’t consider these situations in
these SFT talks. At some point in the near future the hope is that the tools and formalism combined
with singular learning theory (SLT) will have something interesting to say about the loss functions
L(w) of toy neural networks such as the toy model of superposition (TMS) [CLM+23, EHO+22].
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2 Statistical Mechanics and Scaling Laws

With a goal of looking towards field theories of statistical models, since these field theories are de-
scribed in language of Euclidean Quantum Field Theories, it will be necessary to build towards the
the path integral approach for a quantum system. We will instead start with a d = 1 Ising model,
and show how this corresponds to a single spin− 1

2 particle evolving in time. While this example
won’t be associated to a field theory, it will serve nicely as a refresher of quantum mechanics, and
make the analysis we care about (d = 2 Ising Model) easier. This is the simplest way to to learn
about how a d-dimensional classical problem may be mapped onto a d − 1-dimensional quantum
problem.

In general, the allowed values for a classical variables (si = ±1 for the Ising model) will
correspond to the maximal set of eigenvalues of the operators in the quantum problem (the third
Pauli matrix σ3 in our example). The correlation functions will become the expectaton values in
the ground state of a certain transfer matrix. The different sites in the d = 1 lattice will correspond
to different, discrete times in the life a quantum degree of freedom.

The Ising model [Ton17, Ton12] is easy to state, unfortunately, it is hard to solve. We have
a lattice in d spatial dimensions with N lattice sites. On each lattice site i = 1, . . . , N there is a
spin si which can either be spin up si = 1 or spin down si = −1. The collection of spins {si} has
energy

H[si] = −B
∑
i

si − J
∑
⟨ij⟩

sisj . (2.1)

The first term is due to an external magnetic field B that we impose on the system, where if B > 0
the all the spins will want to be up (↑) to lower their energy. The second term is the interactions
between the neighbouring spins, where ⟨ij⟩ means that we sum over all the ”nearset neighbour”
pairs in the lattice. The number of such pairs depends on the dimension d and the type of lattice.

If J > 0, neighbouring spins prefer to be aligned (↑↑ or ↓↓) and we refer to the system as a
ferromagnet. If J < 0 the spins want to be opposing (↓↑ or ↑↓) which makes the system an anti-
ferromagnet. Going forward we will assume J > 0, although the differences between the systems
are minor.1

We are interested in the physics of the Ising model at finite temperature T . The interaction
energy encourages the spins to align the same way, and the external magnetic field encourages the
spins to align in the same direction. Meanwhile, the temperature encourages the spins to ignore
both the interactions and external magnetic as is increases. Since there are many more random
configurations than aligned configurations, the temperature will mess up the nicely ordered states
the interactions and magnetic field prepared.

In the canonical ensemble, the probability of the system sitting in a certain configuration of
spins {si} is given by

p[si] =
1

Z
e−βH[si], (2.2)

where β = 1/T and Z is the partition function given by

Z(T, J,B) =
∑
{si}

e−βH[si]. (2.3)

If we’re able to perform the sum to compute Z, we can extract any information about the system
we want to know. For example, the thermodynamic free energy

Fthermo(T,B) = −T logZ. (2.4)

Here the free energy Fthermo(T,B) is a function of the thermodynamic variables temperature T
and external magnetic field strength B.

1In the anti-ferromagnetic case (J < 0) on certain lattices it is not possible for spins to be opposite to all their
neighbours, such as with d = 2 on a triangular lattice.
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One quantity we will be particularly interested in will be the average spin of the configuration,
we will we refer to as the equilibrium magnetisation

m =
1

N

〈∑
i

si

〉
. (2.5)

This quantity will take values in the range m ∈ [−1, 1]. From our discussion above, we would
expect that for B > 0 we will have m → 1 at low temperatures where the spins are ordered, and
m → 0 at high temperatures where spins are arranged randomly. To make this intuition more
precise, using (2.2) we can check that the magnetisation can be written as

m =
1

N

∑
{si}

eβH[si]

Z

∑
i

si =
1

Nβ

∂ logZ

∂B
, (2.6)

which can be seen via

1

Nβ

∂ logZ

∂B
=

1

Nβ

∂

∂B
log

∑
{si}

e−β(−B
∑

i si−J
∑

⟨ij⟩ sisj)


=

1

Nβ

1

Z

∑
{si}

β

(∑
i

si

)
e(βB

∑
i si+βJ

∑
⟨ij⟩ sisj)

=
1

N

∑
{si}

eβH[si]

Z

∑
i

si

= m.

(2.7)

Taking further derivatives allow us to compute higher moment of the distribution, which we will
see later. From this point onwards we are going to consider the partition function to be

Z =
∑
{si}

exp

(
N−1∑
i=0

K(sisi+1 − 1)

)
(2.8)

where K = βJ > 0 and the subtraction merely adds an addition spin-independent constant of
−K to every site for coveience, which will shift the free energy βF by NK. Another observable of
interest will be the correlation functions of different spins

G(2)(i, j) = ⟨sisj⟩ =
1

Z

∑
{si}

sisj exp

(∑
k

K(sksk+1 − 1)

)
. (2.9)

When there is translation invariance, One would expect the correlation of two observables to be a
function of their correlation length ξ

G(2)(i, j) ∼ e−|j−i|/ξ

|j − i|d−2+η
, (2.10)

which highlights that we expect two spins i and j to have exponential decay as a function of their
distance except when the correlation length diverges ξ →∞ at a critical point and we expect power
law behaviour. This formula and reason for expected power law behaviour should not be obvious,
it is a long story that we will not go into today but [Ola20] are some great lecture notes on this
topic. To clarify, we will be interested in the case when ξ(T = Tc)→∞ and G(2)(i, j) ∼ |j − i|−η

when d = 2 using CFT to compute η for different observables.

3 Interlude: Notation and Pictures

Before discussing how this classical d = 1 Ising model can be mapped onto a d = 0 Quantum
spin-1/2 particle, we need to quickly review some notation. Quantum mechanics, quantum field
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Figure 2.1: Correlation Length ξ(T )

theory and conformal field theory all use the Dirac notation or bra-ket notation introduced by
Dirac. Much of this notation explanation can be found in [Hal13, Vol21]. This notation is is
cumbersome to get used to, but pretty much unavoidable when reading any reference in quantum
physics or the statistical field theory we will be interested in due to their formulation as QFTs and
CFTs.

3.1 Dirac (Bra-Ket) Notation

Notation 3.1. A vector ψ in H (Hilbert space or Quantum state space) is referred to as a ket and
is denoted by |ψ⟩. A continuous linear functional on H is called a bra such that for any ϕ ∈ H,
let ⟨ϕ| denote the bra. This is function such that

⟨ϕ| : H→ C, ⟨ϕ| (ψ) = ⟨ϕ, ψ⟩. (3.1)

The bracket (or bra-ket) of two vectors ϕ, ψ ∈ H is the result of applying the bra ⟨ϕ| to the ket |ψ⟩,
namely the inner product of ϕ and ψ, denoted ⟨ϕ|ψ⟩.

In quantum mechanics, observables are operators.

Postulate 3.1 (Measurement). 1. All physical quantities or observables (e.g. position x, mo-
mentum p, spin s, . . . ) are associated with linear, Hermitian operators (e.g (e.g. position
x̂, momentum p̂, spin σ̂, . . . ), so

quantity A←→ operator Â = Â†. (3.2)

2. When an ideal measurement of the quantity A is performed, the experimental result is
always an eigenvalue of Â.

If A is an operator, it is often denoted by Â to indicate so. Usually the hats are not included
when reading the literature, but we will use it only when confusion could arise. For the operator
A acting on H and ϕ ∈ H a vector, we can form a linear functional ⟨ϕ|A, meaning the linear map
ψ 7→ ⟨ϕ|Aψ⟩. Physicists generally write can expression of this form as

⟨ϕ|A |ψ⟩ . (3.3)

This notation emphasises that there are two different ways about thinking about this quantity. We
may think of ⟨ϕ|A |ψ⟩ either as the linear functional ⟨ϕ|A applied to the vector |ψ⟩ or as the the
linear functional ⟨ϕ| applied to the vector A |ψ⟩.

Notation 3.2. For any ϕ and ψ in H, the expression |ϕ⟩⟨ψ| denotes the linear operator on H
given by

(|ϕ⟩⟨ψ|)(χ) = |ϕ⟩ ⟨ψ|χ⟩ = ⟨ψ|χ⟩ |ϕ⟩ . (3.4)

That is, in mathematics notation, |ϕ⟩⟨ψ| is the operator sending χ to ⟨ψ, χ⟩ϕ.
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Notation 3.3. Given a family of vectors in H labelled by, say, three indices n, l and m, rather
than denoting these vectors as |ψn,l,m⟩, a physicist will denote them simply as |n, l,m⟩.

Notation 3.3 does have a problem, if we have two different sets of vector labelled by the same
set of indices, a mathematician can simply label them as ϕn,l,m and ψn,l,m whereas a physicist has
a problem.

As an example of the Dirac notation, suppose that an operator Ĥ has an orthonormal set of
basis eigenvectors ψn. A physicist would express the decomposition of a general vector in terms of
this basis as be

I =
∑
n

|n⟩⟨n|, (3.5)

where ψn is represented simply as |n⟩ and |n⟩⟨n| is (given that |n⟩ is a unit vector) the orthogonal
projection onto the one-dimensional subspace spanned by the vector |n⟩. This is justified by the
completeness of the Hilbert space H giving the decomposition for a vector ψ. In other words

ψ =
∑
n

⟨ψ|ψn⟩ψn (3.6)

for a complete set of orthonormal basis vectors in H. Therefore,

⟨ψ|ψ⟩ =
∑
n

⟨ψ|ψn⟩⟨ψn|ψ⟩ (3.7)

which implies (3.5). It is common practice for a physicist to refer to this as inserting “a complete
set of states” into an inner product to compute observables.

Notation 3.4. In the physics literature, the complex conjugate of a complex number z is denoted
as z∗ rather than z. What a mathematician calls the adjoint of an operator and denoted by A∗, a
physicist calls the Hermitian conjugate of A and denotes it by A†. Physicists refer to self-adjoint
operators as Hermitian.

Wemay express the concept of an adjoint of an operator (or Hermitian conjugate) of an operator
using Dirac notation. If A is a bounded operator on H. then A† is the unique bounded operator
such that

⟨ψ|A = ⟨A†ψ| . (3.8)

Notation 3.5. Using Dirac notation, given an operator Ô, matrix elements are expressed as

Ô = 1Ô1

=

(
N∑

n=1

|n⟩⟨n|

)
Ô

(
N∑

m=1

|m⟩⟨m|

)

=

N∑
n=1

|n⟩⟨n|
N∑

m=1

|n⟩⟨n|Ô|m⟩⟨m|

=

N∑
n=1

N∑
m=1

Onm|n⟩⟨m|

(3.9)

where we matrix elements Ô with respect to the basis |n⟩ are Onm.

3.2 Schrödinger v. Heisenberg Picture of Quantum Mechanics

In the Schrödinger picture, state vectors evolve in time |ψ(t)⟩ through the Schrödinger equation

iℏ
d |ψ(t)⟩
dt

= H |ψ(t)⟩ (3.10)

but the operators of fundamental observables such as momentum p̂ and position x̂ do not. Given
any inital state |ψ(0)⟩ we can find its future evolution by solving this equation. If we think of the
vector |ψ(t)⟩ and starting at |ψ(0)⟩ evolving via some time operator U(t) so that

|ψ(t)⟩ = U(t) |ψ(0)⟩ , (3.11)
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then the Schrödinger equation

iℏ
dU(t)

dt
= HU(t) (3.12)

gives a formal solution U(t) = e−iH
ℏ t, which is unitary U†U = I.

In the Heisenberg picture, operators evolve in time via time evolution operator U(t). Therefore
we define the Heisenberg Operators to be

Ω(t) = U(t)†ΩU(t) (3.13)

where Ω is the Schrödinger picture operator. The upshot here is that either picture will compute
the same observables

⟨ψ(t)|Ω |ψ(t)⟩ = ⟨ψ(0)|U(t)†ΩU(t) |ψ(0)⟩ = ⟨ψ(0)|Ω(t) |ψ(0)⟩ . (3.14)

One can perform a Wick rotation t = −iτ to consider Imaginary time (or Euclidean Quantum
Mechanics) in all the results above, which is what corresponds to statistical mechanics. If we make
such a rotation and set t = −iτ then set ℏ = 1, we get

U(τ) = e−τH . (3.15)

4 Statistical to Quantum Mechanics

Now for the derivation of the Euclidean quantum problem underlying the classical d = 1 Ising
model. We consider a model with periodic boundary conditions, so site N is the same as site 0.
Consider the partition function

Z =
∑
{si}

e−β
∑n

i=1 −J(sisi+1−1) =
∑
{si}

∏
i

eK(sisi+1−1) (4.1)

where K = βJ and we have added a spin-independent constant of −K added to each site for
convenience later. This will merely shift the free energy βF by NK. Each exponential factor
eK(sisi+1−1) has two degrees of freedom si, si+1 which can both two values, so each factor can have
4 values. We will now introduce a 2 × 2 transfer matrix whose rows and columns are labelled by
these spins s′, s will have matrix elements

Ts′s = ⟨s′|T |s⟩ = eK(s′s−1), (4.2)

In other words we will have elements

T++ = T−− = 1, T+− = T−+ = exp(−2K). (4.3)

The transfer matrix describes if there is a spin So

T =

(
1 e−2K

e−2K 1

)
= I + e−2Kσ1 (4.4)

where I is the 2× 2 identity and σ1 is the first Pauli matrix. The transfer matrix T here is both
real and Hermitian, so T † = T .

Definition 4.1 (Pauli Matrices). We have seen that (at least classically) electrons have this
property called spin, and it something to do with the Pauli Matrices, given below

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(4.5)

with commutation ([A,B] = AB −BA) relations

[σ1, σ2] = 2iσ3, [σ2, σ3] = 2iσ1, [σ3, σ1] = 2iσ2. (4.6)
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We can then use the transfer matrix to rewrite out partition function (4.1) as

Z =
∑

{si}N
i=0

N−1∏
i=0

eK(sisi+1−1)

=
∑
s0

∑
s2

· · ·
∑
sN

N−1∏
i=0

⟨si|T |si+1⟩

=
∑

s0=±1

∑
s2=±1

· · ·
∑

sN=±1

⟨s0|T |s1⟩ ⟨s1|T |s2⟩ · · · ⟨sN−1|T |sN ⟩

=
∑
s0

∑
sN

⟨s0|T

(∑
s1

|s1⟩ ⟨s1|

)
T

(∑
s2

|s2⟩ ⟨s2|

)
· · ·

∑
sN−1

|sN−1⟩ ⟨sN−1|

T |sN ⟩ , (†)

=
∑
s0

∑
sN

⟨s0|TN−1 |sN ⟩ .

(4.7)

In the step (†) we are merely emphasising that only those operators are summed or and the sum
is brought in to highlight the connection to the identity operator. If we are considering the case of
periodic boundary conditions, where s0 = sN , then this becomes the trace of the partition function

Z = TrTN (4.8)

Let us return now to
T = I + e−2Kσ1 (4.9)

We would like to combine this transfer matrix into a matrix exponential. Let us now define K∗(K)
(note K∗ is not the complex conjugate of K) as

tanhK∗(K) = e−2K . (4.10)

. Now since all the pauli matrices square to the identity matrix, we can make us of

eK
∗σ1 =

∞∑
k=0

(K∗)kσk
1

k!

=
∑

k even

(K∗)k

k!
+
∑
k odd

(K∗)k

k!
σ1

= coshK∗ + sinhK∗σ1

= coshK∗(I + tanhK∗σ1).

(4.11)

Therefore we have

T =
eK

∗(K)σ1

coshK∗(K)
, (4.12)

where we will often drop the denominator, since it is not relevant in all averages and correlation
functions we will be interested in. We refer to K∗ as the dual of K, and if you invert (4.10) you
get

tanhK = e−2K∗
(4.13)

so K is the dual of K∗ too. Notice that when one is small, the other is large. Calculating the
eigenvalues of (4.12) one obtains

λ0 = eK
∗
, λ1 = e−K∗

,
λ1
λ0

= e−2K∗
, (4.14)

with the corresponding eigenvectors

|0⟩ = 1√
2

(
1
1

)
, |1⟩ = 1√

2

(
1
−1

)
. (4.15)
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It will be useful in computing the correlation functions that

σ3 |0⟩ = |1⟩ , σ3 |1⟩ = |0⟩ (4.16)

which can be checked using the Pauli matrices and the eigenvectors. If we have a basis of eigen-
vectors for the third Pauli matrix σ3 instead, we will then have

σ3 |+⟩ = + |+⟩ , σ3 |−⟩ = − |−⟩ , (4.17)

where

|+⟩ =
(
1
0

)
, |−⟩ =

(
1
0

)
. (4.18)

4.1 Correlation Functions

Now lets consider the correlation function we are primarily interested in computing. Recall (2.9)
which was

⟨sjsi⟩ =
1

Z

∑
{si}

sjsi exp

(∑
k

K(sksk+1 − 1)

)
(4.19)

Now we claim that if the boundary spins are fixed at values s0 and sN (so we don’t sum over them)
that

⟨sjsi⟩ =
⟨sN |TN−jσ3T

j−iσ3T
i |s0⟩

⟨sN |TN |s0⟩
(4.20)

To see why this is correct, we can insert a complete set of σ3 eigenstates between each factor of T ,
and retrace the calculation (4.7), which gives

⟨sN |TN−jσ3T
j−iσ3T

i |s0⟩
⟨sN |TN |s0⟩

=
⟨sN |TN−jσ3T

j−iσ3
(∑

si
|si⟩ ⟨si|

)
T · · ·T

(∑
s1
|s1⟩ ⟨s1|

)
T |s0⟩

⟨sN |TN |s0⟩

=
∑

s1=±1

∑
s2=±1

· · ·
∑

sN−1=±1

1

Z
⟨sN |T |sN−1⟩ · · · ⟨sj+1|T |sj⟩

sj ⟨sj |T |sj−1⟩ · · · ⟨si+1|T |si⟩ si ⟨si|T |si−1⟩ · · · ⟨s1|T |s0⟩

=
1

Z

∑
s1

∑
s2

· · ·
∑
sN

sjsi

N−1∏
i=0

⟨si+1|T |si⟩

=
1

Z

∑
{si}N−1

i=1

N−1∏
i=0

sjsi e
K(sisi+1−1)

= ⟨sjsi⟩.
(4.21)

which is the classical two-point correlation function. You should read (4.20) as, reading from right
to left with the complete set of states inserted, T i gives a sum of the Boltzman weights until we
get to site i, then σ3 acts on this eigenstate and gives the eigenvalue (spin) si, then we process
via transfer matrix to site j and pull out sj , then continue to the N -th site. The denominator is
just the partition function. Let’s rewrite this is another way, Heisenberg operators are defined via
(3.13). So we will define analagously

σ3(n) = T−nσ3T
n, (4.22)

where the index n plays the role of discrete integer-valued time, and T is thought of as the time-
evolution operator for one unit of Euclidean time. In terms of these operators the correlation
function becomes

⟨sjsi⟩ =
⟨sN |TNσ3(j)σ3(i) |s0⟩

⟨sN |TN |s0⟩
. (4.23)

Notice dropping the coshK∗ does not affect ⟨sjsi⟩ since it cancels out. Now we can also expand
the transfer matrix using the spectral theorem as the operator

T = λ0|0⟩⟨0|+ λ1|1⟩⟨1|. (4.24)
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and
TN = λN0 |0⟩⟨0|+ λN1 |1⟩⟨1|. (4.25)

Now since both λ0 and λ1 are nonzero (4.14), we can use the Perron-Frobenius Theorem which
states that a square matrix with non-zero eigenvalues will have a largest eigenvalue and a corre-
sponding eigenvector with strictly positive components. Assuming λ0 is the biggest one, we can
approximate

lim
N→∞

TN ≈ λN0
[
|0⟩⟨0|+O

(
λ1
λ0

)]
≈ λN0 |0⟩⟨0|. (4.26)

Consider now the limit as N → ∞ (called the thermodynamic limit) for (4.23), with i and j
fixed at values far from 0 and N (the end points), so N − j and i are both large. We may then
approximate the decomposition (4.25) by

Tα ≈ λα0 |0⟩⟨0|, α = N,N − j, i. (4.27)

In this limit we have

⟨sjsi⟩ =
⟨sN |0⟩λN−j

0 σ3T
j−iσ3λ

i
0 |0⟩ ⟨0|s0⟩

⟨sN |0⟩λN0 ⟨0|s0⟩
= ⟨0|σ3(j)σ3(i) |0⟩ . (4.28)

If i > j, we will get the operators in the reverse order. If we define the time-ordering symbol T by

T (σ3(i)σ3(j)) =

{
σ3(i)σ3(j), if i > j

σ3(j)σ3(i), if j < i.
(4.29)

so that in general we have
⟨sjsi⟩ = ⟨0| T (σ3(j)σ3(i)) |0⟩ (4.30)

This operator basically just ensures that events that occur first, act on the state variable first. The
reason for connect i and j with time will be clarified when we get to the Hamiltonian later. Let’s
finish off this discussion on the correlation function but computing

4.2 The Hamiltonian

We have seen that the transfer matrix T plays the role of the time-evolution operator, given that
the Heisenberg operators that arose naturally were defined as

σ3(j) = T−jσ3T
j . (4.31)

If we really are to identify T with U(τ) = e−τH , what is τ? It is one step on our discrete time
lattice. Setting the lattice spacing to τ = 1, we can introduce a Hamiltonian via

T = e−H . (4.32)

Now we see the reason for wanting to define our transfer matrix as an exponential, and we can
read off

H = −K∗σ1 (4.33)

which describes a single spin- 12 particle in the x-plane, as promised. We can write this with our
initial parameters with K = βJ and tanhK∗(K) = e−2K as

H = arctanh(e−2βJ)

(
0 1
1 0

)
. (4.34)

5 Summary: Classical to Quantum

We have seen that the partition function and correlation functions of the classical Ising problem
can be restated in terms of a two-dimensional Hilbert space (the kinematic homeland of a single
quantum spin- 12 degree of freedom). The Schrödinger operators of this theory and σ1 (and σ3 if
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we were to include to external magnetic field), the operator σ2 does not enter since there are no
complex numbers in the classical problem. The Ising spins s are associated with eigenvalues of σ3.

The Transfer matrix T plays the role of the Euclidean time-evolution operator for one unit of
discrete time ∆τ

T ⇐⇒ U(∆τ), (5.1)

where we have been using ∆τ = 1. The N +1 points in the spatial lattice correspond to the N +1
instants of Euclidean time τ = j∆τ . The finite Ising chain corresponds to the time evolution over
a finite time. Next the partiton function Z with s0 = si and sN = sf where i and f stand for
initial and final

⟨sN = sf |TN |s0 = si⟩ ⇐⇒ ⟨sf |U(N∆τ) |si⟩ , (5.2)

corresponds to the matrix elements of the propagator U for imaginary timeN∆τ between the states
⟨sf | and |si⟩. The Heisenberg operators are related via the Schrödinger operators as expected

σ3(j) = T−jσ3T
j ⇐⇒ U−1(j∆τ)σ3U(j∆τ) = σ3(τ = j∆τ). (5.3)

If we formally define a Hamiltonian by

T = e−H∆τ (5.4)

then the dominant eigenvector of T is the ground state eigenvector |0⟩ of H. In our d = 1 case,
H was a simple operator −K∗σ1. In general the T coming from a sensible statistical mechanics
problem will be a nice operator, but its logarithm H need not be, meaning may involve arbitrary
products of operators. The correlation function of the Ising model in the thermodynamic limit
N → ∞ is the ground state expectation value of the time-ordered product of the corresponding
Heisenberg operators

⟨sjsi⟩ ⇐⇒ ⟨0| T (σ3(j)σ3(i)) |0⟩ . (5.5)

Next time we’ll see how the two dimensional Ising Model reduces to a one dimensional quantum
problem, with a path integral that will lead us into it’s field theory.
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