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1 Introduction

This will being with a discussion of 2D classical to 1D Quantum Ising Model, forumalting the
path integral with an action of Majorana Fermions at the critical temperature which will allow us
to derive a CFT for the Ising model at criticality. This disussion will closely follow [Sha17] and
[Mol13] borrowing from [Rid13].

Here we will study the continuum limit formulation of the two-dimensional Ising model, starting
from the Hamiltonian limit of its transfer matrix. We will first derive the quantum Hamiltonian of
the model and then we will see how to diagonalize the quantum Hamiltonian by means of fermionic
fields via the Jordan-Wigner Transformation: brining the Hamiltonian to a quadratic form with
creation and annihilation operators of the fermions. In the limit where the lattice spacing goes
to zero, the Ising model becomes a theory of free Majorana fermions, which satisfy a relativistic
dispersion relation and their mass is a direct measurement of the displacement of the temperature
from the critical temperature Tc. The fermionic formulation of the two-dimensional Ising model is
crucial for understanding many of its physical properties and for the computation of its correlation
functions, which we will see when we arrive at Conformal Field Theory.

2 2D Ising Model

On a square lattice with N columns and M rows, we define the model by

Z =
∑
si

exp

K∑
⟨i,j⟩

sisj

 , (2.1)

where K = J/kT and the symbol ⟨i, j⟩ means that sites i and j are nearest neighbours. There
are many choices one could make for the edges of the lattice, periodic boundary conditions in
one direction which makes a cylinder, or both directions which makes a torus, or open boundary
conditions where spins at the edges have no nearest neighbours. For now let us just say that M
and N and the number of sites NM are huge and we are nowhere near the ends. There are 2NM
bonds on a square lattice with NM sites because each site has four bonds enamating from it, but
each bond is counted twice, once at each of its endpoints.

Consider quickly the extreme limits. As K = J/kT → ∞ or T → 0, the spins will be all up or
down, the system will be magnetised, and ⟨M⟩, the average spin per site, will be at its maximum
of ±1. Let us pick ⟨M⟩ = +1. As K → 0 or T → ∞, the Boltzmann weight will be 1 for all
configurations

Here we will now outline how the Ising model can be solved exactly. The plan is to first
write down the transfer matrix T , and show how it can be diagonalised by introducing fermionic
variables. The actual diagonalisation will be carried out in the τ -continuum limit where T = e−τH

and H is a simple, readily diagonalised Hamiltonian. Now, as in the 1D case we have seen, we
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want the transfer matrix corresponding to

Z =
∑
{si}

exp

[∑
i

Kxsisi+x +Kτ (sisi+τ − 1)

]
, (2.2)

where i+ x and i+ τ are neighbours of site i in the x and τ directions, where we have subtracted
1 from the sisi+τ so we can borrow results from the d = 1 Ising model. We have also set Kx = βJ
and Kτ = βJ ′ for the horizontal and vertical directions respectively. We claim the transfer matrix
for a lattice with N columns is

T =
exp

[∑N
n=1K

∗
τσ1(n)

]
[coshK∗

τ ]
N

· exp

[
N∑

n=1

Kxσ3(n)σ3(n+ 1)

]
≡ V1V3,

(2.3)

where σ1(n) and σ3(n) are the usual (Heisenberg) Pauli matrices at sites n. To see why this
is the correction operator, recall Z = TrTN from the last talk. Now the transfer matrix is
2N × 2N dimensional. So if we sandwich T between ⟨s′1 · · · s′n · · · s′N | and |s1 · · · sn · · · sN ⟩ where
(s′1, · · · , s′n, · · · , s′N ) and (s1, · · · , sn, · · · , sN ) are the eigenvalues of σ3(n) for n = 1, . . . , N .

⟨s′1 · · · s′N |T |s1 · · · sN ⟩ = ⟨s′1 · · · s′N |
exp

[∑N
n=1K

∗
τσ1(n)

]
[coshK∗

τ ]
N

· exp

[
N∑

n=1

Kxσ3(n)σ3(n+ 1)

]
|s1 · · · sN ⟩

(2.4)
Acting to the right on their own eigenstates, the σ3(n)’s in V3 will give the spin values sn = ±1,
yielding the Boltzmann weight in the horizontal bonds of the row containing the sn’s.

⟨s′1 · · · s′N |T |s1 · · · sN ⟩ = ⟨s′1 · · · s′N |
exp

[∑N
n=1K

∗
τσ1(n)

]
[coshK∗

τ ]
N

· exp

[
N∑

n=1

Kxσ3(n)σ3(n+ 1)

]
|s1 · · · sN ⟩

= ⟨s′1 · · · s′N |
exp

[∑N
n=1K

∗
τσ1(n)

]
[coshK∗

τ ]
N

· exp

[
N∑
i=1

Kxsisi+x

]
|s1 · · · sN ⟩

= exp

[
N∑
i=1

Kxsisi+x

]
⟨s′1 · · · s′N |

exp
[∑N

n=1K
∗
τσ1(n)

]
[coshK∗

τ ]
N

|s1 · · · sN ⟩ .

(2.5)
As for V1, the matrix that is left inside the inner product, the matrix elements will factorise into
a product over the n sites, since each σ1(n) will only act on the n-th eigenstate, giving

⟨s′1 · · · s′N |T |s1 · · · sN ⟩ = exp

[
N∑
i=1

Kxsisi+x

]
⟨s′1 · · · s′N |

exp
[∑N

n=1K
∗
τσ1(n)

]
[coshK∗

τ ]
N

|s1 · · · sN ⟩

= exp

[
N∑
i=1

Kxsisi+x

]
⟨s′1 · · · s′N |

N∏
n=1

exp [K∗
τσ1(n)]

[coshK∗
τ ]

|s1 · · · sN ⟩

= exp

[
N∑
i=1

Kxsisi+x

]
N∏

n=1

⟨s′n|
exp [K∗

τσ1(n)]

[coshK∗
τ ]

|sn⟩ .

(2.6)

where we can take the sum out of the exponential since the first Pauli matrix will commute with
itself. The last step requires some explanation, here we merely mean that if we expand the product,
and then act repeatedly with the operator, we will end up with a product of numbers, which the
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last step highlights. Now, each matrix element can be simply computed

⟨s′n|
exp [K∗

τσ1(n)]

[coshK∗
τ ]

|sn⟩ =
1

coshK∗
τ

⟨s′n| coshK∗
τ + sinh [K∗

τσ1(n)] |sn⟩

=
1

coshK∗
τ

(⟨s′n| coshK∗
τ |sn⟩+ ⟨s′n| sinh [K∗

τσ1(n)] |sn⟩)

= δs′n,sn + ⟨s′n|
sinhK∗

τ

coshK∗
τ

|−sn⟩

= δs′n,sn + tanhK∗
τ δs′n,−sn .

(2.7)

To see why this is the Boltzmann weight, identify sn = si and s
′
n = si+τ and observe that when

sn = s′n = ±1, the Boltzmann weight in the τ direction exp (Kτ (sisi+τ − 1)) gives 1, and when
sn = −s′n we get exp(−2Kτ ). Remembering how K∗

τ is defined, this is simply tanhK∗
τ . Therefore,

we have
δs′n,sn + tanhK∗

τ δs′n,−sn = exp (Kτ (sns
′
n − 1)) . (2.8)

Therefore we have

⟨s′1 · · · s′N |T |s1 · · · sN ⟩ = exp

[
N∑
i=1

Kxsisi+x

]
N∏

n=1

δs′n,sn + tanhK∗
τ δs′n,−sn

= exp

[
N∑
i=1

Kxsisi+x

]
N∏

n=1

exp (Kτ (sns
′
n − 1))

= exp

[
N∑
i=1

Kxsisi+x +Kτ (sisi+τ − 1)

]
.

(2.9)

So the operator gives the correct matrix elements. While T above does the job, it is unfortunately
not Hermitian, as we promised all operators to be for us to be able to write expectation values
⟨ψ|A|ψ⟩ unambiguously. We could trade it for a Hermitian version

T = V
1/2
3 V1V

1/2
3 , (2.10)

where now each V
1/2
3 captures half the energies of the horizontal bonds in the two rows in question,

where the other halves come from the next insertion of the transfer matrix in the computation
of the partition function Z. We will ignore the Hermicity issue since it will disappear in the τ -
continuum limit we will care about and stick with using T = V1V3, we will also again drop the
(coshK∗

τ )
N in the denominator of V1 and the additive contribution of log coshK∗

τ it will make to
βf .

Speaking of the partition function, using this tranfer matrix as in the 1D case we can express
the partition function using the matrix elements as before. To do this, lets make a quick notational
change, let the a− th row of the lattice be denoted by

µa = {s1, . . . , sN}a-th row (2.11)

so that we can define Therefore we can think of a configuration of the system to be specified by
the ensemble of rows {µ1, . . . , µn}. The a-th row interacts with only the nearest neighbour rows,
namely µa−1 and µa+1. Let E(µa, µa+1) be the interaction energy between two nearest-neighbour
rows and let E(µa) be the energy coming from the interactions of spins placed on the a-th row

E(µ, µ′) = −J ′
n∑

k=1

σkσ
′
k,

E(µ) = −J
n∑

k=1

σkσk+1 −B

n∑
k=1

σk,

(2.12)

where J and J ′ are the coupling constants alng the vertical and horizontal axis respectively. The
total energy (Hamiltonian) for the system can therefore we written as

H(µ1, . . . , µn) =

n∑
a=1

[E(µa, µa+1) + E(µa)] . (2.13)
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Figure 2.1: Transfer matrix between rows

The partition function will therefore be given by

Z =
∑
µ1

∑
µ2

· · ·
∑
µn

exp [−βH(µ1, . . . , µn)] . (2.14)

Therefore we can now write our transfer matrix T in terms of rows to give

⟨s′1 · · · s′N |T |s1 · · · sN ⟩ = ⟨µ|T |µ′⟩ = exp [−β(E(µ, µ′) + E(µ))] = exp

[
N∑
i=1

Kxsisi+x +Kτ (sisi+τ − 1)

]
.

(2.15)
We can use this to rewrite our partition function as

Z =
∑
µ1

∑
µ2

· · ·
∑
µn

exp

[
−β

n∑
a=1

[E(µa, µa+1) + E(µa)]

]

=
∑
µ1

∑
µ2

· · ·
∑
µn

N∏
a=1

exp [−β [E(µa, µa+1) + E(µa)]]

=
∑
µ1

∑
µ2

· · ·
∑
µn

N∏
a=1

⟨µa|T |µa+1⟩

=
∑
µ1

∑
µ2

· · ·
∑
µn

⟨µ1|T |µ2⟩ ⟨µ2|T |µ3⟩ · · · ⟨µn|T |µ1⟩

=
∑
µ1

⟨µ1|T

(∑
µ2

|µ2⟩ ⟨µ2|

)
T

(∑
µ3

|µ3⟩

)
⟨µ3| · · ·

(∑
µn

|µn⟩ ⟨µn|

)
T |µ1⟩

=
∑
µ1

⟨µ1|TN |µ1⟩

= TrTN

(2.16)

where we used the complete set of states identity
∑

a |a⟩ ⟨a| = I. So as before the partition function
is the trace of the transfer matrix T .

Let us now look towards obtaining the critical point in terms of the coupling constants (Kx,Kτ )
for the Ising model, before taking the limit τ → 0. Temporarily let’s consider the case where
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K = Kτ = Kx. In the interest of time I won’t derive these here but the high temperature T → ∞
and low temperature T → 0 expansions of the partition function are given by

Z(K) = 2N (coshK)2N (1 +N tanh4K + . . .) (2.17)

Z(K) = e2NK(1 +N e−8K + . . .) (2.18)

where N = NM . The first expansion will hold for small K, and the second will hold for large K.
Now recall from the first talk the relation

e−2K = tanhK∗(K) (2.19)

In other words, K∗ as a function of K coincides with K as a function of K∗. Consequently, the
dual of the dual is the original (K∗)∗ = K (for example a self dual function could be y = 1/x).
Let’s consider the low temperature expansion (2.18) with K∗ giving

Z(K∗)

e2NK∗ = (1 +N e−8K∗
+ . . .). (2.20)

Making use of our dual relation (2.19), we can show that

Z(K∗)

e2NK∗ = (1 +N e−8K∗
+ . . .)

= (1 +N (e−2K∗
)4 + . . .)

= (1 +N tanh4K + . . .)

=
Z(K)

2N (coshK)2N

(2.21)

This can be shown that both expansions agree to any order, and this is gives self-duality relation

Z(K)

2N (coshK)2N
=
Z(K∗)

e2NK∗ . (2.22)

We can use (2.19) to gives
sinh 2K = 2 sinhK coshK

= 2 tanhK cosh2K

=
2 tanhK

1− tanh2K

=
2e−2K∗(K)

1− e−4K∗(K)

=
2

e2K∗(K) − e−2K∗(K)

=
1

sinh 2K∗(K)

(2.23)

So we have the relation
sinh 2K sinh 2K∗(K) = 1, (2.24)

This then gives the more illuminating relation

Z(K)

(sinh 2K)N/2
=

Z(K∗)

(sinh 2K∗)N/2
(2.25)

This equation shows the existence of a symmetry of the 2D Ising model and establishes a mapping
between the high and low temperature phases of the model. If we have the case with two different
coupling constants Kx and Kτ , once again using the high and low T expansions which we won’t
do here, one obtains the relation

Z(Kx,Kτ )

(sinh 2Kx sinh 2Kτ )N/4
=

Z(K∗
x,K

∗
τ )

(sinh 2K∗
x sinh 2K

∗
τ )

N/4
(2.26)
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which motivates the dual relations between the different coupling constants

e−2Kx = tanhKτ , e−2Kτ = tanhKx. (2.27)

Large values of Kx and Kτ are equivalent to small vaulues of K∗
τ and K∗

x. We can use the dual
equation (2.19) to obtain

e−2Kx = e−2K∗
τ , e−2Kτ = e−2K∗

x (2.28)

Therefore we have the duality maps in the (Kx,Kτ )-plane, with self-dual points obeying

(Kx,Kτ ) = (K∗
τ ,K

∗
x). (2.29)

We can now identify the critical point. If a critical point occurs at the critical value Kc, then same
critical value should also happen at K∗ = Kc. These could be two different values, but if we make
the further hypothesis that there is only one critical point, then these values must coincide

K∗
c = Kc, or e

−2Kc = tanhKc =⇒ Kc = 0.4407 . . . (2.30)

Let us now consider the general case where there are two coupling constants, the relation

sinh 2K sinh 2K∗ = 1, (2.31)

extended to two coupling constants gives

sinh 2Kx sinh 2Kτ =
1

sinh 2K∗
x sinh 2K

∗
τ

(2.32)

So the invariant points will be along the curve

sinh 2Kx sinh 2Kτ = 1 (2.33)

We can plot the phase space of the coupling constants, where we have a high temperature (dis-
ordered phase) below the curve, and the low temperature (ordered phase) the critical curve. Any
pair of coupling constants Kτ and Kx along this curve corresponds to a critical situation in the
Ising model, with an infinite correlation length.

This equation gives the self-dual points in the phase diagram. The system is critical on this
whole line, and the isotrophic point like at intersection with Kτ = Kx = Kc giving

sinh2 2Kc = 1 =⇒ Kc = 0.4407. (2.34)

This will be the critical point we consisder in the τ → 0 limit to obtain a field theory.

3 Analysis in the τ-Continuum Limit

Now, one can show how the Ising model can be solved exactly on a finite periodic lattice by
mapping to fermions, we are primarily interested in the case where the vertical lattice spacing goes
to zero τ → 0 to obtain the 1D quantum Ising chain. In this limit we have be careful that the
physical content of the system does not change.

We will set1

K∗
τ = λτ, Kx = τ (3.1)

where λ ∈ R is a proportionality factor connecting the disordered and ordered phases of the Ising
model. In Fig. 3.2 we have the line showing λ = 1, where below is λ < 1 for the disordered phase
of the Ising model, and λ > 1 for the ordered phase of the Ising model. λ = 1 is the critical point2.

Now taking (2.3), we would ordinarily need to make use of the Baker-

eAeB = eA+B+ 1
2 [A,B]+ 1

12 ([[A,B],B]+[A,[A,B]])+... (3.2)

1To see where this comes from, one can keep track of the amount of spins flipping between each row, and then
see that Kx ∼ τ and exp(−2Kτ ) ∼ τ , then setting λ proportionality factor, see [Mus20] and [Won05] for this.

2[Ton17] page 59-60 shows images for each phase of λ
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Figure 3.1: Phase diagram for coupling constants in the Kx −Kτ plane. The critical points lie on
the line sinh 2Kx sinh 2Kτ = 1. Solid circles indicate pairs of points with open cirlces indicating
their duals.

Figure 3.2: The solid curve is tanhKτ = e−2Kx separate’s the two phases. The region where
both K’s are small is disordered, and the other side is ordered. The dotted vertical line at small
(eventually infinitesimal) Kx is the range probed by the τ -continuum limit. Moving up and down
the dotted line we can see the two phases and the transition.
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However, since we are interested in the τ → 0 case, we can ignore the τ2 terms and higher, and
this allows us to combined the exponentials in (2.3) to give

T = exp

[
N∑

n=1

K∗
τσ1(n)

]
· exp

[
N∑

n=1

Kxσ3(n)σ3(n+ 1)

]

= exp

[
N∑

n=1

λτσ1(n)

]
· exp

[
N∑

n=1

τσ3(n)σ3(n+ 1)

]

= exp

[
τ

N∑
n=1

λσ1(n) + σ3(n)σ3(n+ 1) +O(τ2)

] (3.3)

where recall we set K∗
τ = λτ and Kx = τ to combine the exponentials. Recall we have defined

that T = e−τH , so we can identify the Hamiltonian as

H = −
N∑

n=1

λσ1(n) + σ3(n)σ3(n+ 1). (3.4)

Now, in the thermodynamic limit N → ∞, this sum is extended to on all sites between −∞ and
∞ in both directions, so the Hamiltonian becomes

H = −
∞∑

n=−∞
λσ1(n) + σ3(n)σ3(n+ 1). (3.5)

Now, since we are in the Heisenberg picture of quantum mechanics, where operators depend on
time [Vol21]. Let A be a Schrödinger operator so the Heisenberg operator is A(τ) = U(τ)†AU(τ)
for U(τ) = e−τH in Euclidean quantum mechanics with ℏ = 1. The equation of motion will be
given by

dA(τ)

dτ
=
∂U†(τ)

∂τ
AU(τ) + U†(τ)A

∂U(τ)

∂τ
(3.6)

Now making use of the Euclidean Schrödinger equation

−∂U(τ)

∂τ
= H(τ)U(τ) (3.7)

We have
∂U(τ)

∂τ
= −H(τ)U(τ),

∂U†(τ)

∂τ
= U†(τ)H(τ) (3.8)

dA(τ)

dτ
=
∂U†(τ)

∂τ
AU(τ) + U†(τ)A

∂U(τ)

∂τ

= U†(τ)H(τ)AU(τ)− U†(τ)AH(τ)U(τ)

= U†(τ)H(τ)U(τ)U†(τ)AU(τ)− U†(τ)AU(τ)U†(τ)H(τ)U(τ)

= U†(τ)H(τ)U(τ)A(τ)−A(τ)U†(τ)H(τ)U(τ)

= [U†(τ)H(τ)U(τ), A(τ)]

= [H,A(τ)].

(3.9)

where we inserted U(τ)†U(τ) = I and since H is independent of time in U(τ) = e−τH so we have
U†(τ)H(τ)U(τ) = H. Therefore we are left with the Heisenberg equation of motion for Euclidean
quantum mechanics

dA(τ)

dτ
= [H,A(τ)]. (3.10)

It is worth mentioning that Heisenberg operators in Euclidean Quantum mechanics are not adjoint
at τ = 0 do not evolve into adjoints at later times

A†(τ) = eτHA†e−τH ̸= (A(τ))
†
= e−τHA†eτH . (3.11)
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Let’s apply the Heisenberg equation of motion (3.10) to our operators in (3.5), we obtain

∂

∂τ
σ3(r) = [H,σ3(r)]

=

[
−

∞∑
a=−∞

λσ1(a) + σ3(a)σ3(a+ 1), σ3(r)

]

= −
∞∑

a=−∞
λ [σ1(a), σ3(r)] + [σ3(a)σ3(a+ 1), σ3(r)]

= −λ[σ1(r), σ(r)]
= 2λσ2(r)

= −2λσ1(r)σ3(r).

(3.12)

The next step is to transform our equations of motion to be those of Majoarana fermions instead
of Pauli matrices. Before we do this though, we need a reason as to why we would do such a thing.
In the next talk we will look at path integral of free fermions, are derive the action to which these
equations of motion will belong (SFT3). If we consider the critical point λ = 1 of the model, the
the action will not only describe a quantum field theory but a conformal field theory, which will
then study in SFT4.
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