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1 Introduction

The central object in quantum Statistical Mechanics is the partition function

Z = Tr e−βH = TrTN (1.1)

where H is the quantum Hamiltonian and T is the transfer matrix. Recall for the Ising model we
found the Hamiltonian to be

H =

N∑
n=1

−λσ1(n)− σ3(n)σ3(n+ 1), (1.2)

[Sha17]. If we consider the partition function with s0 = si and sN = sf (for some initial and final
spin) recall that

⟨sN = sf |TN |s0 = si⟩ ⇐⇒ ⟨sf |U(N∆τ) |si⟩ (1.3)

corresponds to the matrix element of the propagator U for imaginary time N∆τ between the states
⟨sf | and |si⟩. It follows that

U(f, i; τ) = ⟨f |U(τ) |i⟩ (1.4)

describing how a state evolves from position i to position f through the time evolution operator
is a more general object to study. This is what we shall now do for the Feynman path integral
for a generic Hamiltonian of a point particle in 1-dimension. We shall then study the operator
formalism of fermionic and Grassmann numbers, then combine these to derive the path integral
for the free fermion. Finally, we will express our Hamiltonian (1.2) in fermions to give the action
that will describe the Conformal Field Theory.

2 The Feynman Path Integral

Now we turn to a path integral that was first studied by Feynman in his treatment of a particle
in one dimension. In this formalism we have to consider all possible paths from a point xi to the
final point xf .

We will perform the calculation in the real-time case t and keep ℏ. As before with the Ising
Model, the game plan is to chop up U(t) = e−itH/ℏ into a product of N factors of U(t/N), insert
the resolution of the identity N−1 times and take the limit N → ∞. Let’s assume our Hamiltonian
is time independent and has the form1

H =
P 2

2m
+ V (X) (2.1)

First, we may write the transfer matrix/unitary operator U(t) as

U(t) = e−
it
ℏ H = exp

[
− it
ℏ

(
P 2

2m
+ V (X)

)]
(2.2)

Now we would like to be able to split the exponential, to justify this we make use of the following
theorem.

1Note the relation to the SLT Hamiltonian with m = 1
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Theorem 2.1 (Trotter Product Formula). Suppose that A and B are self-adjoint operators on H,
and that A and B is dense on A+B and (essentially) self-adjoint on Dom(A)∩Dom(B). For all
ψ ∈ H, we have

lim
N→∞

∥∥∥eit(A+B)ψ − (eitA/NeitB/N )Nψ
∥∥∥ = 0, (2.3)

meaning (eitA/NeitB/N )N converges to eit(A+B) in the strong operator topology.

We will omit the proof (see [Hal13] Chapter 20) and not worry about what Hilbert space we are
in but use this to justify splitting the exponential in the derivation of the path integral formula.
Let ε = t/N . So we wish to compute,

⟨x′|U(t) |x⟩ = ⟨x′|U(t/N) · · ·U(t/N)︸ ︷︷ ︸
N times

|x⟩

= ⟨x′| e− iε
2mℏP

2

· e− iε
ℏ V (X) · · · e− iε

2mℏP
2

· e− iε
ℏ V (X) |x⟩

(2.4)

The next step is to insert the resolution function the identity (??) between every two adjacent
factors of U(t/N). Setting x′ = xn and x = x0 and doing this gives us

⟨xn|U(t) |x0⟩ = ⟨xn| e−
iε

2mℏP
2

e−
iε
ℏ V (X)

(∫ ∞

−∞
|xn−1⟩⟨xn−1|dxn−1

)
e−

iε
2mℏP

2

e−
iε
ℏ V (X)

· · ·
(∫ ∞

−∞
|x1⟩⟨x1|dx1

)
e−

iε
2mℏP

2

e−
iε
ℏ V (X) |x0⟩

=

∫ ∞

−∞
⟨xn| e−

iε
2mℏP

2

e−
iε
ℏ V (X)|xn−1⟩⟨xn−1|dxn−1e

− iε
2mℏP

2

e−
iε
ℏ V (X)

· · ·
∫ ∞

−∞
e−

iε
2mℏP

2

e−
iε
ℏ V (X) |x0⟩

=

∫
(R)N

⟨xn| e−
iε

2mℏP
2

e−
iε
ℏ V (X)|xn−1⟩⟨xn−1| · · · |x2⟩⟨x1|e−

iε
2mℏP

2

e−
iε
ℏ V (X) |x0⟩

N∏
i=1

dxi

=

∫
(R)N

⟨xn| e−
iε

2mℏP
2

e−
iε
ℏ V (xn)|xn−1⟩⟨xn−1| · · · |x2⟩⟨x1|e−

iε
2mℏP

2

e−
iε
ℏ V (x0) |x0⟩

N∏
i=1

dxi

(2.5)
where in the last step we acted on the ket’s with the exponential of the position function V (X) to
get a number. Now in each case, we need to deal with the quantity

⟨xn| e−
iε

2mℏP
2

e−
iε
ℏ V (xn−1) |xn−1⟩ = e−

iε
ℏ V (xn−1) ⟨xn| e−

iε
2mℏP

2

|xn−1⟩ . (2.6)
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So far, we only “know” that X |x⟩ = x |x⟩ and P |p⟩ = p |p⟩ as our operators act on our vectors.
Let’s take (2.6), ignoring the prefactor for now, and insert a complete set of momentum eigenstates
to the left of the momentum operator

⟨xn| e−
iε

2mℏP
2

|xn−1⟩ =
∫ ∞

−∞
⟨xn|p⟩ ⟨p| e−

iε
2mℏP

2

|xn−1⟩
dp

2πℏ

=
1

2πℏ

∫ ∞

−∞
e

ixnp
ℏ e−

iε
2mℏp

2

⟨p|xn−1⟩ dp

=
1

2πℏ

∫ ∞

−∞
e

ixnp
ℏ e−

iε
2mℏp

2

e−
i
ℏpxn−1dp

=
1

2πℏ

∫ ∞

−∞
exp

[
i

ℏ

(
p(xn − xn−1)−

p2

2m
ε

)]
(2.7)

Completing the square and using Fresnel’s integral∫ ∞

−∞
e−iap

2

dp =

√
π

ia
(2.8)

we finally [Vol21] have √
m

2πiℏε
exp

[
im

ℏ
(xn − xn−1)

2

ε

]
(2.9)

Therefore in summary each factor gives

⟨xn| e−
iε

2mℏP
2

e−
iε
ℏ V (X) |xn−1⟩ =

√
m

2πiℏε
exp

[
im

ℏ
(xn − xn−1)

2

ε
− iε

ℏ
V (xn−1)

]
. (2.10)

Subsituting into our propogator calculation (2.5) for each factor we obtain

⟨xn|U(t) |x0⟩ = lim
N→∞

∫
(R)N

N∏
n=1

(√
m

2πiℏε
exp

[
im

ℏ
(xn − xn−1)

2

ε
− iε

ℏ
V (xn−1)

]) N∏
n=1

dxn

= lim
N→∞

( m

2πiℏε

)N/2 ∫
(R)N

exp

[
N∑
n=1

im

ℏ
(xn − xn−1)

2

ε
− iε

ℏ
V (xn−1)

]
N∏
n=1

dxn.

(2.11)

As a quick aside, if you are unfamiliar with inserting complete sets of states to evaluate the
result, one can invoke the following theorem at each point xn instead in terms of the wave function
itself.

Theorem 2.2. Assuming that ψ0 ∈ L2(R) ∩ L1(R). Then ψ(x, t) that satisfies the Shroödinger
equation may be computed for all t ̸= 0 as

ψ(x, t) =

√
m

2πitℏ

∫ ∞

−∞
exp

{
i
m

2tℏ
(x− y)2

}
ψ0(y)dy. (2.12)

where ψ0(y) = ψ(y, 0) is the initial condition.

We will not proof this here either (see [Hal13] Chapter 4) having given an alternative derivation
in the conventional way.

Now emembering that ε = t/N and assuming we can freely rearrange the order of integration,
we obtain

⟨xn|U(t) |x0⟩

= lim
N→∞

C

∫
(R)N

exp

[
i

ℏ

N∑
n=1

ε

(
m

2

∣∣∣∣xn − xn−1

ε

∣∣∣∣2 − V (xn−1)

)]
× dx1dx2 · · · dxN .

(2.13)

where C =
(

m
2πiℏε

)N/2
. So far the argument is mostly rigorous, where our results can come from

(2.1) and (2.2) and we assume we can freely exchange the order of integration. The non-rigorous
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part comes in attending to evaluate the limit. Let us think of the values xn for j = 0, . . . , N as
constituting values of a path x(s) at the points sn = nε = nt/N , so

xn = x(nt/N). (2.14)

Since the distance between sj−1 and sj is ε, the term
xn−xn−1

ε is an approximation to the derivative
of x(s) with respect to s. Meanwhile, the sum over j in the right hand side of the exponent is an
approximation of an integral. Thus is we then take the limit, in a totally nonrigourous fashion we
obtain

⟨xn|U(t) |x0⟩

= C

∫
x(0)=x0

exp

[
i

ℏ

∫ t

0

(
m

2

∣∣∣∣dxds
∣∣∣∣2 − V (x(s))

)
ds

]
Dx

(2.15)

where in integration is over all paths where x(0) = x0, C is a normalisation constant, and Dx
is something like “Lebesgue measure” on all the space of paths x(−) mapping [0, t] into R. The
quantity x in the expression Dx is a path, not a point in R. The expression in the integral of
the exponential is the Lagrangian, and the integral over it is called the action. Furthermore, the
absolute value of the constant C is easily seen to be infinite, so we cannot take the right-hand side
of this formula literally.r While this was all done in one-dimension, see [Hal13] for a derivation of
a particle in N dimensions.

Now in trying to give rigorous meaning to the path integral formula of Feynman, Kac proceeded
by considering the “imaginary time” time-evolution operator exp(−τH/ℏ) where τ = −it. The
original idea being that if one can use path integrals to understand the operator for τ , one can
understand the “real time” operator by analytic continuation. One can make this rigorous by
doing this Wick rotation, and defining

µ = C exp

{
−1

ℏ

∫ t

0

m

2

∣∣∣∣dxds
∣∣∣∣2 ds

}
Dx (2.16)

as Weiner Measure leading to the Feynman-Kac Formula, which we will not go into here, see
[Hal13]. We need to breifly remark about the path integral approach to quantum field theory. We
consider quantum field theories usually to be defined on space-time of dimension d, so that space
has d−1 dimensions. The configuration space for the classica version of this theory is the collection
of “spatial fields”, that is maps ϕ(x) of Rd−1 into some finite-dimensional vector space V . A path
in ths space of fields is then a map ϕ(x, t) of Rd−1×R ∼= Rd into V . A simple is called ϕ4 theorym
with is a Euclidean path integral∫

exp

{
−1

ℏ

∫
Rd

[
c1 ∥∇ϕ(x)∥2 + c2ϕ(x)

2 + c4ϕ(x)
4
]
dx

}
(2.17)

Note that the action is integrated over spacetime, not just time. We will now consider ϕ4 theory
in these talks.

3 Fermion Operator Formalism and Coherent States

Now we would like to take Feynmann’s formalism for a path integral interpretation and apply it to
our 2D Ising model. To do this we’re going to learn about the path integral for fermions, and then
later argue that the operators of our Hamiltonian can be expressed as fermions, so are described
by the same theory. For the moment we can think of our fermions Ψ as a change of variables from
our spin operators σ. Before jumping into path integrals for fermions, lets get used to the operator
formalism of fermions.

Fermions obey the anti-commutation relations

{Ψ†,Ψ} = Ψ†Ψ+ΨΨ† = 1

{Ψ,Ψ} = {Ψ†,Ψ†} = 0
(3.1)

The second equation tells us that
Ψ2 = (Ψ†)2 = 0. (3.2)
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Introducing the number operator N = Ψ†Ψ. We see that

N2 = Ψ†ΨΨ†Ψ

= Ψ†(Ψ†Ψ+ΨΨ† −Ψ†Ψ)Ψ

= Ψ†({Ψ†,Ψ} −Ψ†Ψ)Ψ

= Ψ†(1−Ψ†Ψ)Ψ

= N −Ψ2(Ψ†)2

= N.

(3.3)

Therefore since N(N − 1) = 0 this tells us that the Eigenvalues of the operator N must be 0 or 1
with normalised Eigenstates

N |0⟩ = 0 |0⟩ = 0, N |1⟩ = 1 |1⟩ = |1⟩ . (3.4)

Now to show that Ψ† |0⟩ = |1⟩ (so Ψ† is a creation operators) and Ψ |1⟩ = |0⟩ (so Ψ is an annhilation
operator). To show the first consider

NΨ† |0⟩ = Ψ†ΨΨ† |0⟩ = Ψ†(1−Ψ†Ψ) |0⟩ = Ψ† |0⟩ (3.5)

which shows that N acting on Ψ† |0⟩ has N = 1. So we must have Ψ† |0⟩ = 1 |1⟩ = |1⟩. This vector
will have norm ∥∥Ψ† |0⟩

∥∥2 = ⟨0|ΨΨ† |0⟩ = ⟨0| (1−Ψ†Ψ) |0⟩ = ⟨0|0⟩ −N |0⟩ = 1. (3.6)

Similarly one can show Ψ |1⟩ = |0⟩. There are no other vectors in the Hilbert space, any attempts
to produce more states is ruined by (3.2). Therefore the Pauli principle rules out more vectors,
the states are either empty of singly occupied.

Now in order to evalate the path integral, we’re going to need to have a resolution of the identity
(identity operator we insert to derive the path integral). We will use fermion coherent states |ψ⟩,
which are the eigenstates of the annihilation operator

Ψ |ψ⟩ = ψ |ψ⟩ . (3.7)

The eigenvalues ψ is a strange object, since if we act once more with Ψ, we see that ψ2 = 0
since Ψ2 = 0. Any ordinary variable that squares to zero is zero, but this not, it is a Grassman
variable. One should think of Grassman numbers as elements of an exterior algebra of our vector
(Hilbert space) where multiplication is the wedge product ψ1ψ2 = ψ1 ∧ ψ2. Other examples of
wedge products is the determinant in R2 and the cross product in R3.

The wedge product ∧ on V = Λ(H) (the exterior algebra of our Hilbert space H) which obey
bilinearity, associativity and antisymmetry. Since we’ll be in two dimensions the only property
relevant to us is antisymmetry ψ1 ∧ψ2 = −ψ2 ∧ψ1 and ψ ∧ψ = 0. We will not explicity write the
wedge product, so ψ2 = ψ ∧ ψ, but keep in mind that the Grassman variables obey these rules.

These variables anticommute with each other and with all fermionic creation and annihilation
operators (they will therefore commute with a string containing an even number of such operators).
Now, ψ does not commute with all the state vectors. If we suppose our Grassman numbers commute
with the ground state ψ |0⟩ = |0⟩ψ, then it follows that

ψ |1⟩ = ψΨ† |0⟩
= (−Ψ†ψ + {ψ,Ψ†}) |0⟩
= −Ψ† |0⟩ψ + {ψ,Ψ†} |0⟩
= − |1⟩ψ.

(3.8)

Anti-commuting variables square to zero, Grassman variable anticommute with the creation and
annihilation operators by definition the anti-commutator gives zero. We will propose our state
that satsifies Ψ |ψ⟩ = ψ |ψ⟩ can be expressed as

|ψ⟩ = |0⟩ − ψ |1⟩ , (3.9)
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where ψ is a grassman number. To check this

Ψ |ψ⟩ = Ψ |0⟩ −Ψψ |1⟩
= 0 + ψΨ |1⟩
= ψ |0⟩
= ψ(|0⟩ − ψ |1⟩)
= ψ |ψ⟩

(3.10)

since ψ2 = 0, as required. If we act on both sides of (3.10), with Ψ, the left and ride side vanish.
It may be similarly verified that

⟨ψ|Ψ† = ⟨ψ|ψ (3.11)

where
⟨ψ|Ψ† = ⟨0| − ⟨1|ψ = ⟨0|+ ψ ⟨1| . (3.12)

First note that the coherent state vectors are not the usual vectors from a complex vector space
since they are linear combinations with grassman coefficients. Second note that ψ is not the
complex conjugate of ψ, and ⟨ψ| is not the adjoint of |ψ⟩. We can therefore see change of grassman
variables where ψ and ψ undergo unrelated transformations. Sometimes ψ is denoted as η to
emphasise the difference. We will call it ψ to remind us that in a theory where every operator Ψ
has an adjoint Ψ†, for every label ψ there is another independent label ψ. The inner product of
two coherent states is

⟨ψ|ψ⟩ =
(
⟨0| − ⟨1|ψ

)
(|0⟩ − ψ |1⟩)

= ⟨0|0⟩+ ⟨1|ψψ |0⟩
= 1 + ψψ

= eψψ,

(3.13)

since (ψψ)2 = 0. Any function of Grassmann variables can be expanded as follows

F (ψ) = F0 + F1ψ (3.14)

where no higher powers are possible.

Before we can do the path integral we have to learn how to integrate over Grassmann numbers.
We will now define integrals over Grassmann numbers. These have no geometric significance (as
areas or volumes) are formally defined. We just have to know how to integrate 1 and ψ.∫

ψdψ = 1,

∫
1dψ = 0. (3.15)

The integral is postulated to be translationally invariant under a shift by another Grassmann
number η: ∫

F (ψ + η)dψ =

∫
F (ψ)dψ. (3.16)

This agrees with the expansion (3.14) if we set∫
ηdψ = 0. (3.17)

In general for a collection of Grassmann numbers (ψ1, . . . , ψN ) we postulate that∫
ψidψj = δij . (3.18)

There are no limits on these integrals and the integration is assumed to be a linear operation.
The differential dψ is also a Grassmann number and so will anticommute with another Grassmann
number ψ, hence

∫
dψψ = −1. Remember here it is best to think of these integrals simply as

operators on the Grassmann numbers. The integrals for ψ or any other Grassmann variable are
identical. These integrals are simply assigned these values. A result we will use often is∫

ψψdψdψ = 1. (3.19)
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If the differentials or variables come in any other order there can be a change of sign. For example
we will also invoke the result ∫

ψψdψdψ = −1. (3.20)

We need two more results before we can write down the path integral. The first is the resolution
of the identity

I =

∫
|ψ⟩⟨ψ|e−ψψdψdψ. (3.21)

This can be seen using (3.9), (3.13) and (3.19) to give∫
|ψ⟩⟨ψ|e−ψψdψdψ =

∫
|ψ⟩⟨ψ|(1− ψψ)dψdψ

=

∫
(|0⟩ − ψ |1⟩)(⟨0| − ⟨1|ψ)(1− ψψ)dψdψ

=

∫ (
|0⟩⟨0| − |0⟩⟨1|ψ − ψ|1⟩⟨0|+ ψ|1⟩⟨1|ψ

)
(1− ψψ)dψdψ

=

∫ (
|0⟩⟨0|+ ψ|1⟩⟨1|ψ

)
(1− ψψ)dψdψ (†)

= −|0⟩⟨0|
∫
ψψdψdψ + |1⟩⟨1|

∫
ψψdψdψ (††)

= |0⟩⟨0|+ |1⟩⟨1|
= I.

(3.22)

In step (†) and (††) recall that only ψψ = −ψψ will have a non-zero integral and that Grassmann
numbers square to zero. Finally, we will need that for any bosonic operator (an operator made of
an even number of Fermi operators) Ω, the trace is given by2

TrΩ =

∫
⟨−ψ|Ω |ψ⟩ e−ψψdψdψ. (3.23)

4 Fermionic Path Integral

We are now ready to map the quantum problem of Fermions to a path integral. Let us begin with

Z = Tr e−βH , (4.1)

where H is a normal-ordered operator H(Ψ†,Ψ). We will write the exponential as follows:

e−βH = lim
N→∞

(
e−

β
NH
)N

= lim
N→∞

(1− εH) · · · (1− εH)︸ ︷︷ ︸
N times

,
(4.2)

where we set ε = β/N . Now, using the fact that the the trace of the Boltzmann weight e−βH is
the partition function (4.1), we will insert the identity between each N factor N − 1 times using
(3.21) and take the trace using (3.23) over ψ0ψ0, giving us

Z = Tr e−βH ,

≈ Tr

(1− εH) · · · (1− εH)︸ ︷︷ ︸
N times


=

∫
⟨−ψ0| (1− εH)I(1− εH)I · · · I(1− εH) |ψ⟩ e−ψ0ψ0dψ0dψ0

=

∫
⟨−ψ0| (1− εH) |ψN−1⟩ e−ψN−1ψN−1 ⟨ψN−1| (1− εH) |ψN−2⟩ e−ψN−2ψN−2

× ⟨ψN−2| · · · |ψ1⟩ ⟨ψ1| (1− εH) |ψ0⟩ e−ψ0ψ0

N−1∏
i=0

dψidψi

(4.3)

2checked below formula but probably not worth including very similar to identity operator calculation
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where are yet to take the limit N → ∞. Note that ε = β/N really has units of timeℏ, where we
will set ℏ = 1. Now consider a single inner product in the above calculation, we can make the
replacement

⟨ψi+1| 1− εH(Ψ†,Ψ) |ψi⟩ = ⟨ψi+1|ψi⟩ − ε ⟨ψi+1|H(Ψ†,Ψ) |ψi⟩

= eψi+1ψi − ε ⟨ψi+1|H(ψi+1, ψi) |ψi⟩

= eψi+1ψi − εH(ψi+1, ψi)e
ψi+1ψi

= eψi+1ψi(1− εH(ψi+1, ψi))

= eψi+1ψie−εH(ψi+1,ψi)

(4.4)

where in the last step we are anticipating the limit ε → 0 and only keep terms linear or constant
in ε. Now let us define additional pair of variables not to be integrated over by

ψN = −ψ0

ψN = −ψ0.
(4.5)

The first of these equations allows us to replace the leftmost bra in (4.3) ⟨−ψ0| with ⟨ψN |. The
reason for doing this will become clear later. Putting together all the factors we end up with

Z =

∫ N−1∏
i=0

eψi+1ψie−εH(ψi+1,ψi)e−ψiψidψidψi

=

∫ N−1∏
i=0

exp

[(
ψi+1 − ψi

ε
ψi −H(ψi+1, ψi)

)
ε

]
dψidψi

=

∫
exp

[
N−1∑
i=0

ε

(
ψi+1 − ψi

ε
ψi −H(ψi+1, ψi)

)]
N−1∏
i=0

dψidψi

(4.6)

Now we are going to make perform a discrete version of integration by parts via

N−1∑
i=0

fk(gk+1 − gk) = (fNgN − f0g0)−
N−1∑
i=0

gk+1(fk+1 − fk) (4.7)

Therefore from (4.6) we have

Z =

∫
exp

[
N−1∑
i=0

(
ψi+1 − ψi

ε
ψi −H(ψi+1, ψi)

)
ε

]
N−1∏
i=0

dψidψi

=

∫
exp

[
N−1∑
i=0

(
ψi+1

ψi+1 − ψi
ε

−H(ψi+1, ψi)

)
ε

]
N−1∏
i=0

dψidψi

(4.8)

where we made use of (4.5) to eliminate the boundary terms. Now we need to take N → ∞,
which sends ε = β/N → 0. So far the argument is mostly rigourous, the truely non-rigourous part
comes in attempting to evaluate the limit. Let us think of the values ψi, ψi for i = 0, . . . , N − 1 as
constituting values of a path ψ(τ) at the points τi = iε = iβ/N , so

ψi(τ) = ψ(iβ/N). (4.9)

Since the distance between τi and τi+1 is ε, the term ψi+1−ψi

ε is an approximation to the derivative
of ψ(τ) with respect to τ . Meanwhile the sum over i in the right handside of the exponent is an
approximation of an integral. Thus is we then take the limit, in a totally non-rigourous fashion we
obtain

Z ≃
∫
eS(ψ,ψ)[DψDψ], (4.10)

where

S =

∫ β

0

(
ψ(τ)

(
− ∂

∂τ

)
ψ(τ)

)
−H(ψ(τ), ψ(τ))dτ. (4.11)
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The step in taking the limit N → ∞ leading to the continuum form of the action (4.11) needs
some explanation. With all the factors of ε present we do appear to get the continuum expression
in the last formula. However, the notion of replacing differences by derivatives is purely symbolic
for Grassmann variables. There is no sense in which ψi+1 − ψi is small, in fact the objects have
no numerical values. What we really mean is that when evaluated in terms for ordinary numbers,
the Grassman integral will give exact results for anything one wishes to calculate, such as the Free
energy. With this approximation only quantities insensitive to high frequences (in Fourier space)
will be given correctly. The free energy will come out wrong, but the correlation functions will be
correctly reproduced (what we’re interested in) because these are given as derivatives of the free
energy and these derivatives make the integrals sufficiently insensitive to high frequencies. It is in
this sense that we are replacing H(ψi+1, ψi) → H(ψ(τ + ε), ψ(τ)) by H(ψ(τ), ψ(τ)) in same spirit.

Now all we have to do is substitute the Hamiltonian for the 2D Ising model in terms of Majorana
fermions (transformations of the Pauli operators) and we have our path integral for our theory to
study the conformal field theory. Let’s recall our usual Dirac fermion operators Ψ, and Ψ†. Recall
these obey

{Ψ,Ψ†} = 1, {Ψ,Ψ} = {Ψ†,Ψ†} = 0 (4.12)

We will consider the combinations

ψ1 =
Ψ+Ψ†
√
2

, Ψ =
ψ1 + iψ2√

2

ψ2 =
Ψ−Ψ†
√
2i

, Ψ† =
ψ1 − iψ2√

2

(4.13)

which obey
{ψi, ψj} = δij . (4.14)

In general N fermions ψi for i = 1, . . . , n obeying the anticommutation relations (4.14) are called
Majorana Fermions. Imagine that at each site we have a pair of Majorana fermions ψ1(n) and
ψ2(n). These live in a two-dimensional space, as can bee seen by considering the Dirac fermions
Ψ(n),Ψ†(n) we can construct from them. The two states corresponding to nF = 0, 1, on the full
lattice the fermions will need a Hilbert space of dimension 2N . We can define these Majorana
fermions on the lattice via the Jordan-Wigner Transformation

ψ1(n) =

 1√
2

(∏n−1
l=1 σ1(l)

)
σ2(n), if n > 1,

1√
2
σ2(1), if n = 1.

ψ2(n) =

 1√
2

(∏n−1
l=1 σ1(l)

)
σ3(n), if n > 1,

1√
2
σ3(1), if n = 1.

(4.15)

This implies that
{ψi(n), ψj(m)} = δijδnm. (4.16)

This transformation is to ensure that fermions at different sites will anticommute. While the
transformation is good ensuring global anticommutation relations, simple operators involving a
few spins will typically involve a large number of fermions. Amazingly though, something very
nice happens for our two operators that appear in our Hamiltonian

σ1(n) = −2iψ1(n)ψ2(n)

σ3(n)σ3(n+ 1) = 2iψ1(n)ψ2(n+ 1).
(4.17)

Therefore, we can now rexpress our Hamiltonian in terms of Majorana fermions

H =

N∑
n=1

−λσ1(n)− σ3(n)σ3(n+ 1)

=

N∑
n=1

2iλψ1(n)ψ2(n)− 2iψ1(n)ψ2(n+ 1)

=

N∑
n=1

2i(λ− 1)ψ1(n)ψ2(n)− 2iψ1(n) [ψ2(n+ 1)− ψ2(n)]

(4.18)
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with the constraint ψ(N + 1) = ∓ψ(1). Now remember we have not taken the continuum limit
of a → 0 yet. If we want to consider the correlators in the continuum theory between points a
distance x apart, we must chooes n such that na = x.

⟨ψ(0)ψ(n)⟩ = e−n/ξ(λ)

n
(4.19)

where we note that d = 2 and ν = 1 so ξ(λ(a)) = 1/ma which we won’t justify here, but see
[KBS10]. We are going to define the renormalized continuum fields ψr(x) as

ψr(x) =
1√
a
ψ
(x
a

)
. (4.20)

To avoid a massive detour in this talk, we are simplying going to assert that λ = 1−ma, this may
be physically motivated based on particle physics, see [Sha17]. This process of rescaling the fields
and varying the coupling λ and a to ensure the physical quantities are left fixed and finite in terms
of the laboratory length x and mass m as we let a → 0 is called taking the continuum limit. It
follows that the renormalized fields obey the anticommutation rules in this limit

{ψαr(x), ψβr(x′)} = δαβ(x− x′), (4.21)

and our correlators have the form

⟨ψr(0)ψr(x)⟩ =
e−mx

x
. (4.22)

In the next talks though we will be interested in the correlation functions at the critical point
λ = 1, which will look like power law functions.

Now we will take our Hamiltonian on the lattice in terms of the Majorana fermions (4.14) and
build towards expressing these in the continuum limit

H =
∑
n

2i(λ− 1)ψ1(n)ψ2(n)− 2iψ1(n) [ψ2(n+ 1)− ψ2(n)]

= (λ− 1)
∑
n

iψ1(n)ψ2(n) + iψ1(n)ψ2(n)

− i
∑
n

(ψ1(n)ψ2(n+ 1) + ψ1(n)ψ2(n+ 1)− ψ1(n)ψ2(n)− ψ1(n)ψ2(n))

(4.23)

Now recall that λ = 1 −ma. We will also use the fact that ψ1(n)ψ2(n) = −ψ2(n)ψ1(n) and we
are going to add and subtract i(ψ1(n)ψ2(n)−ψ2(n)ψ1(n)) and to the Hamiltonian and bring them
inside term without m. Doing all this gives us

H = −a
∑
n

m (iψ1(n)ψ2(n)− iψ2(n)ψ1(n))

− i
∑
n

(ψ1(n)ψ2(n+ 1) + ψ1(n)ψ2(n+ 1)− ψ1(n)ψ2(n)− ψ1(n)ψ2(n))

+
∑
n

i(ψ1(n)ψ2(n)− ψ2(n)ψ1(n))− i(ψ1(n)ψ2(n)− ψ2(n)ψ1(n))

= −a
∑
n

m (iψ1(n)ψ2(n)− iψ2(n)ψ1(n))

− i
∑
n

ψ1(n)ψ2(n+ 1)− ψ1(n)ψ2(n)− ψ2(n+ 1)ψ1(n) + ψ2(n)ψ1(n)

= −a
∑
n

m (iψ1(n)ψ2(n)− iψ2(n)ψ1(n))

− i
∑
n

ψ1(n)(ψ2(n+ 1)− ψ2(n))− (ψ2(n+ 1)− ψ2(n))ψ1(n).

(4.24)

Now we will again do a summation by parts on the term (ψ2(n + 1) − ψ2(n))ψ1(n), noting that
the boundary terms vanish. We will define ∆f(n) = f(n+1)−f(n) as the difference operator and
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then we obtain

H = −a
∑
n

m (iψ1(n)ψ2(n)− iψ2(n)ψ1(n))

− i
∑
n

ψ1(n)(ψ2(n+ 1)− ψ2(n))− ψ2(n+ 1)(ψ1(n+ 1)− ψ1(n))

= −a
∑
n

m (iψ1(n)ψ2(n)− iψ2(n)ψ1(n))

+ a
∑
n

ψ1(n)

(
−i∆ψ2(n)

a

)
+ ψ2(n+ 1)

(
−i∆ψ1(n)

a

)
(4.25)

Now we will take the continuum limit a→ 0. In doing so we are going to trade ψ → ψr, a
∑
n →

∫
,

∆ψ
a → ∂ψ

∂x since x≫ a. We will ignore the subscript r the renormalised fields, but we are left with

Hr =
H

2a
=

1

2

∫
−miψ1(x)ψ2(x) +miψ2(x)ψ1(x)dx

+
1

2

∫
ψ1(x)

(
−i ∂
∂x

)
ψ2(x) + ψ2(x)

(
−i ∂
∂x

)
ψ1(x)dx

(4.26)

Therefore looking back at our action (4.11) we have

S[ψ,ψ] =

∫ (
ψ(x, τ)

(
− ∂

∂τ

)
ψ(x, τ)

)
−H(ψ(x, τ), ψ(x, τ))dτdx. (4.27)

Clearly we have been a bit sloppy in remembering that these operators also depend on “time” τ ,
so really we should have

Hr =
1

2

∫
−miψ1(x, τ)ψ2(x, τ) +miψ2(x, τ)ψ1(x, τ) dx

+
1

2

∫
ψ1(x, τ)

(
−i ∂
∂x

)
ψ2(x, τ) + ψ2(x, τ)

(
−i ∂
∂x

)
ψ1(x, τ)dx

(4.28)

Furthermore note that we have an integral for an action over x and τ now. Recall that in the
path integral derivation we are looking for stationary points of point particles on paths P in the
action S : P → R, so the action is an integral over time. In the case of quantum field theory, we
are looking for a metric for a manifold M that is a stationary point of the action S : M → R so
now we have an integral over spacetime, as in the ϕ4 theory mentioned. Identifying ψ → ψ2 and
ψ → ψ1 we obtain

S[ψ,ψ] =

∫ (
ψ(x, τ)

(
− ∂

∂τ

)
ψ(x, τ)

)
−H(ψ(x, τ), ψ(x, τ))dτdx

=

∫ (
ψ(x, τ)

(
− ∂

∂τ

)
ψ(x, τ)

)
− 1

2
miψ(x, τ)ψ(x, τ) +

1

2
miψ(x, τ)ψ(x, τ)

− 1

2
ψ(x, τ)

(
−i ∂
∂x

)
ψ(x, τ)− 1

2
ψ(x, τ)

(
−i ∂
∂x

)
ψ(x, τ)dxdτ

(4.29)

Now we follow [Mus20] for transformation into complex coordinates

Ψ(z, z̄) =
ψ(x, τ) + iψ(x, τ)√

2
,

Ψ(z, z̄) =
ψ(x, τ)− iψ(x, τ)√

2

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂τ

)
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂τ

)
.

(4.30)
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After a tediuous calculation one arrives as the free fermion action (up to a prefactor)

S =

∫
Ψ(z, z̄)

∂

∂z̄
Ψ(z, z̄) + Ψ(z, z̄)

∂

∂z
Ψ(z, z̄) + imΨ(z, z̄)Ψ(z, z̄)dzdz̄, (4.31)

where recall the critical point is m = 0. So our action for the conformal field theory will be

S =

∫
Ψ(z, z̄)

∂

∂z̄
Ψ(z, z̄) + Ψ(z, z̄)

∂

∂z
Ψ(z, z̄)dzdz̄, (4.32)

which is where we will pick up as the starting point for conformal field theory next time.
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