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1 Introduction

So far in our story we have taken a 2D classical Ising model in terms of spins si, quantised it to
obtain spin operators σ̂i that give the spins si as Eigenvalues. We then took the lattice spacing a to
zero a → 0 and the lattice size N to infinity N → ∞ and set the temperature T to be the critical
temperature T = Tc, and transformed our operators σ̂ → Ψ. These operators Ψ are examples
of (Fermionic) Quantum Fields ϕ : Rd → Rd now acting on a d-dimensional (in our case d = 2)
space-time manifold. Before we can use conformal symmetry to solve correlation functions of these
operators, we need to find out conformal symmetry is! Much of the content here can be found in
[Ger21, Rid13] and [Sch08].

2 What are Conformal Transformations?

Classically, a field theory refers to a construction of the dynamics of a field, i.e., a specification of
how a field changes with time or with respect to other independent physical variables on which the
field depends. Fields are modelled as vector (or tensor) valued functions on space-time. Usually
this is done by writing an action for the field, and treating it as a classical mechanical system
with an infinite number of degrees of freedom. In a quantum field theory, these functions become
operators on the quantum state space S. Conformal field theories are quantum field theories which
are invariant under angle-preserving transformations. These transformations preserve the angle
between two non-zero vectors in the field theory. Due to this invariance, conformal field theories
do not require a Lagrangian or Hamiltonian description, however our example of the Ising model
we saw so far did fit this bill. Let’s take a step back from Quantum Fields and think about field
theory and conformal transformations classically for a minute.

Definition 2.1. A semi-Riemannian manifold is a pair (M, g) consisting of a smooth manifold M
of dimension d and a smooth tensor field g called the metric tensor that measures the infinitesimal
distance between points on M that is symmetric and non-degenerate.

We will adopt the standard physics convention of representing vectors and matrices by their
components. The metric tensor gµν is a matrix of dimension d that measures the infinitesimal
distance between space-time points in a field theory. For d = 2, The infinitesimal distance squared
is therefore

ds2 = g11(dx
1)2 + g12dx

1dx2 + g21dx
2dx1 + g22(dx

2)2 (2.1)

If we choose the Euclidean metric δµν we obtain the expected Pythagorean theorem

ds2 = (dx1)2 + (dx2)2

We will also make use of Einstein summation notation, so (2.1) will be expressed as

ds2 =

2∑
µ,ν=1

gµνdx
µdxν ≡ gµνdx

µdxν .
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The metric tensor also can take a vector from a vector space to its dual space: xµ = gµνx
ν . The

dot product in this special notation is therefore

x · x = xµgµνx
ν (2.2)

We also denote the derivative ∂
∂xµ as ∂µ and the norm as ∥x∥ = (x · x)1/2.

Now we need to discuss the algebra of conformal transformations that will be used to con-
strain our correlation functions. We will first classically derive how the conformal transformations
infinitesimally affect a function on Rd, then take d = 2, and using R2 ∼= C, show that these trans-
formations become holomorphic and antiholomorphic transformations on the complex plane. In
formally a conformal transformation is one which preserves, angles.

Definition 2.2. A conformal transformation to be a transformation x 7→ x′ which preserves the
metric up to a strictly positive, non-zero scale factor

g′µν(x
′) = Λ(x)gµν(x), (2.3)

where the scale factor depends on x.

Clearly (2.3) preserves angles. Consider two vectors xµ and yν in the field theory over the field
Rd where d is the dimension. If they are both transformed conformally to a point z so that (2.3)
applies, then the angle between these vectors will transform as

cos(θ′) =
x′ · y′

∥x′∥ ∥y′∥

=
gµν(z

′)x′µy′ν

(gµν(z′)x′µx′ν)
1/2

(gµν(z′)y′µy′ν)
1/2

=
Λ(z)gµν(z)x

µyν

(Λ(z)gµν(z)xµxν)
1/2

(Λ(z)gµν(z)yµyν)
1/2

=
x · y

∥x∥ ∥y∥
= cos(θ). (2.4)

While the above (2.4) applies to a metric that depends on the coordinates x, we will assume the
metric now to be constant gµν(x) = gµν , however we will not assume that the transformed metric
g′µν(x) is, in general.

To derive the conformal transformations infinitesimally, we will expand our vector x′µ = xµ +
εµ(x) and

Lemma 2.1. If we let Λ(x) = 1 − Ω(x) and expand our vector x′µ = xµ + εµ(x) we obtain the
infinitesimal conformal equation

∂µεν + ∂νεµ = Ωgµν . (2.5)

Proof. Observe that the infinitesimal length squared of a vector ds2 = g′µνdx
′µdx′ν between two

points does not depend on our choice of coordinates. Therefore, ds2 = g′µνdx
′µdx′ν = gµνdx

µdxν .
This leads to

gµνdx
µdxν = g′µνdx

′µdx′ν = g′µν (dx
µ + ∂ρε

µdxρ) (dxν + ∂σε
νdxσ)

= g′µνdx
µdxν + ∂ρg

′
µνε

µdxρdxν + ∂σg
′
µνε

νdxµdxσ

= g′µνdx
µdxν + ∂ρενdx

ρdxν + ∂σεµdx
µdxσ

= (Λ(x)gµν + ∂µεν + ∂νεµ) dx
µdxν , (2.6)

where we note g′µν = g′νµ since g′µν is symmetric, and we can let ρ = µ and σ = ν, as these
indices are summed over. We also safely ignored the infinitesimal squared term. While we used
the primed metric to lower an index on an unprimed quantity. The error in doing so is also
infinitesimal squared, and can be safely ignored. For the equality to hold we must have

gµν = Λ(x)gµν + ∂µεν + ∂νεµ. (2.7)

Substituting Λ(x) = 1− Ω(x) gives the desired result.
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Now if we multiply both sides of (2.5) by gνµ, the inverse matrix of gνµ, we obtain

gνµ∂µεν + gνµ∂νεµ = Ωgνµgµν

∂νεν + ∂µεµ = Ωd

2

d
(∂ · ε) = Ω, (2.8)

where d = δµµ is the dimension. We can see already from (2.8) that d = 2 appears to be of special
interest, so we will take the hint and set d = 2, primarily because this is the setting that connects
to all our hard work so far.

3 The Two-Dimensional Conformal Algebra

We will now derive the conformal transformations in two dimensions to create an algebra, namely
the conformal algebra. In two dimensions with the Euclidean metric, this algebra is two commuting
copies of the Witt algebra.

For d = 2, the constraints (2.5) and (2.8) heavily constrain the infinitesimal conformal trans-
formations, and combining them will lead to the two-dimensional conformal algebra. We will now
solve these for the Euclidean metric gµν = δµν . Take the infinitesimal conformal equation (2.5)
and substitute our calculation for the scale factor Ω as in (2.8). This gives us

∂µεν + ∂νεµ = δµν
2

d
(∂ · ε)

= δµνδ
ρσ∂ρεσ.

Expanding out our indices, we get

2∂1ε1 = ∂1ε2 + ∂2ε1 = 2∂2ε2 for µ = ν,

∂1ε2 = −∂2ε1 for µ ̸= ν.

These are the Cauchy-Riemann equations for ε1 and ε2. We now make a change of variables, since
R2 ∼= C [Mur24]

ε = ε1 + iε2, ε̄ = ε1 − iε2,

z = x1 + ix2, z̄ = x1 − ix2,

∂1 = ∂ + ∂, ∂2 = ∂ − ∂.

(3.1)

Where we have used the notation ∂ = ∂z and ∂ = ∂z̄. In these coordinates the Cauchy-
Riemann equations, now for ε and ε̄, read ∂ε̄ = 0 and ∂ε = 0. Therefore, we conclude that
ε = ε(z) is holomorphic and ε = ε(z̄) is antiholomorphic.

Using this, we can now define the generators of these conformal transformations. These will be
differential operators, and they generate a Lie algebra called the conformal algebra. To construct
these generators, we take a classical field ϕ(x′µ) (scalar function), which is now a function of two
variables: z and z̄. Under the change of coordinates, x′µ = xµ + εµ, we perform an infinitesimal
Taylor expansion to obtain

ϕ(x′µ) = ϕ(xµ + εµ) = ϕ(xµ) + εµ∂µϕ(x
µ) + · · · . (3.2)

The generators are given as εµ∂µ. From here we will denote the field ϕ(xµ) as ϕ(z, z̄).

Definition 3.1. A lie algebra g is a non-commutative, non-associative algebra equipped with a
bilinear operation [−,−] : g× g → g satisfying for a, b ∈ F and x, y, z ∈ g

1. [ax+ by, z] = a[x, z] + b[y, z] and [x, ay + bz] = a[x, y] + b[x, z]

2. [x, y] = −[y, x]

3. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

(3.3)
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As an exmaple the vector space of all n × n matrices with real entries becomes a Lie algebra
when the bracket is given by the commutator for A,B ∈ gl(n;R)

[A,B] = AB −BA. (3.4)

Lemma 3.1. The operators ℓn = −zn+1∂, ℓ̄n = −z̄n+1∂̄ are the generators of infinitesimal
conformal transformations, which are two copies of a Lie algebra known as the Witt Algebra,
which satisfy the following commutation relations

[ℓm, ℓn] = (m− n)ℓm+n, [ℓm, ℓ̄n] = 0, [ℓ̄m, ℓ̄n] = (m− n)ℓ̄m+n. (3.5)

Proof. Note that any infinitesimal holomorphic transformation may be expressed as

z′ = z + ϵ(z), ε(z) =

∞∑
n=−∞

cnz
n+1 (3.6)

where the infinitesimal variation ε(z) is expanded in a Laurent series around z = 0. Suppose that
we had an arbitrary dimensionless field ϕ(z′, z̄′), where we adopt our coordinates as specified in
(3.1). Making an infinitesimal transformation (3.6) in (3.2) gives

ϕ (z′, z̄′) = ϕ(z, z̄)− ε(z)∂ϕ(z, z̄)− ε̄ (z̄) ∂̄ϕ(z, z̄).

Setting δϕ(z, z̄) = ϕ (z′, z̄′)− ϕ(z, z̄), we see

δϕ(z, z̄) = −ε(z)∂ϕ(z, z̄)− ε̄ (z̄) ∂̄ϕ(z, z̄)

=

∞∑
n=−∞

(
cnℓnϕ(z, z̄) + c̄nℓ̄nϕ(z, z̄)

)
, (3.7)

where we identify the generators

ℓn = −zn+1∂, ℓ̄n = −z̄n+1∂̄. (3.8)

This tells us that ℓn and ℓ̄n are the generator of infinitesimal conformal transformations. Since
these are differential operators, we can compute the commutators of these generators

[ℓm, ℓn] = [−zm+1∂,−zn+1∂]

= zm+1∂
(
zn+1∂

)
− zn+1∂

(
zm+1∂

)
= zm+1

(
(n+ 1)zn∂ + zn+1∂2

)
− zn+1

(
(m+ 1)zm∂ + zm+1∂2

)
= (n−m)zm+n+1∂

= (m− n)ℓm+n. (3.9)

The anti-holomorphic calculation is identical, and the reader can see from inspection that the
holomorphic and anti-holomorphic generators commute, hence [ℓm, ℓ̄n] = 0. This gives us the
conformal algebra in two dimensions as the direct sum of two infinite dimensional Lie algebras,
each known as the Witt Algebra.

In other words, the Witt algebra has the generators (ℓn)n∈Z as a complex vector space basis,
satisfying (3.9). The algebra of infinitesimal conformal transformations with a Euclidean metric
in two dimensions is infinite dimensional. Note that the Witt algebra (3.9) contains a finite
dimensional subalgebra generated by {ℓ−1, ℓ0, ℓ1}.

There is a much longer story to be told here about this finite dimensional subalgebra, for our
use however, we need only realise that the set of conformal transformations {ℓ−1, ℓ̄−1, ℓ0, ℓ̄0, ℓ1, ℓ̄1}
encode the following:

• −
(
ℓ−1 + ℓ̄−1

)
, −i

(
ℓ−1 + ℓ̄−1

)
generate classical infinitesimal translations

• −
(
ℓ0 + ℓ̄0

)
, −i

(
ℓ0 + ℓ̄0

)
generate classical infinitesimal dilations and rotations
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• −
(
ℓ1 + ℓ̄1

)
, −i

(
ℓ1 + ℓ̄1

)
generate classical infinitesimal special conformal transformations

Definition 3.2. A global conformal transformations is an injective holomorphic function which is
defined on the entire plane C with at most on exceptional point

The exceptional point is taken to be {∞}. These global conformal transformations can be
exponentiated to give the Möbius Transformations on the Riemann sphere C ∪ {∞} which is our
manifold M we will be using with the usual metric from now on.

Definition 3.3. The global conformal transformations defined on the Riemann sphere C ∪ {∞}
are the Möbius transformations:

z 7→ az + b

cz + d
with a, b, c, d ∈ C, (3.10)

such that ad− bc ̸= 0.

• Global translations are given by c = 0 and a, d = 1: z 7→ z + b

• Global rotations and dilations are given by b, c = 0 and d = 1: z 7→ az

• Global special conformal transformation (SCT) is given by a = 0 and b, d = 1: z 7→ 1
cz+1

The set of Möbius transformations is the set of all orientation preseving global conformal trans-
formations. One last point to address before moving on is that the conformal group is often referred
to as ”infinite dimensional”, but what does this mean? This is an artifact of physicists thinking
and calculating infinitesimally (Witt algebra) but then talking and writing globally (Möbius trans-
formations). In two-dimensional conformal field theory, usually only the infinitesimal conformal
invariance of the system under consideration is used.

Now that we know the two-dimensional conformal algebra, which is two commuting copies of
the Witt algebra, we need to quantise these symmetry generators so that they may act upon our
quantum field theory.

4 The Virasoro Algebra

Thus far we have worked in a classical field theory, however in a quantum field theory, the symmetry
generators become operators on the quantum state space S. The goal here is now to take our
algebra of conformal transformations in two dimensions, the Witt algebra (3.9), and derive the
quantised version: the Virasoro algebra Vir.

In a conformally invariant quantum field theory, instead of the quantum state space admitting
a representation of two copies of the Witt algebra, the projective state space will admit such a
representation. As we wish to work in the state space S, we will lift this projective representation
to a representation of the central extension of the Witt algebra, giving the Virasoro algebra Vir.

Another reason one would ever want to do this is that the classical conformal symmetry no
longer holds at the quantum level due to the presence of the trace anomaly. More precisely, the
tracelessness of the quantum stress-energy tensor is incompatible with the normal ordering needed
to define it. We haven’t met the stress-energy tensor yet or normal ordering, so we will just treat
this as a part of the canonical quantisation procedure.

Definition 4.1. For a general Lie algebra g, we define the central extension of g to be g′ = g⊕C
with commutation relations:

[x′, y′]g′ = [x, y]g + c p(x, y) x′, y′ ∈ g′, x, y ∈ g,

[x′, c]g′ = 0, x′ ∈ g′, c ∈ C,
(4.1)

where x′ = x⊕ 0, c = 0⊕ c in g′ for x ∈ g, c ∈ C. Furthermore, p : g× g → C is a bilinear function.

Definition 4.2. The Virasoro Algebra Vir is a complex Lie algebra with infinite basis given by
{Ln|n ∈ Z} ∪ {c} with commutation relations

[Lm, Ln] = (m− n)Lm+n +
1

12
(m3 −m)δm+n,0c. (4.2)
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The constant c is called the central charge of our CFT.

Lemma 4.1. The Virasoro Algebra Vir is the cental extension of the Witt algebra.

Proof. We denote the generators of the quantum conformal symmetry algebra by Ln. In terms of
(4.1), x′, y′ = Lm, Ln with g′ = Vir will be the Virasoro algebra modes, with x, y = ℓm, ℓn as the
Witt algebra modes. Using (4.1), the Ln modes will have the commutation relations

[Lm, Ln] = (m− n)Lm+n + c p(m,n), (4.3)

for some function p. Since the Lie bracket is antisymmetric, p(m,n) = −p(n,m). We can show

that by appropriately redefining the generators Lm 7→ L̂m, we can arrange for p(n, 0) and p(1,−1)
to be zero by setting

L̂m = Lm +
c p(n, 0)

n
, for n ̸= 0,

L̂0 = L0 +
c p(1,−1)

2
.

This is to provide the commutation relations

[L̂m, L̂0] = mLm + c p(m, 0) = L̂m

[L̂1, L̂−1] = 2L0 + c p(1,−1) = 2L̂0.
(4.4)

We will drop the hats, but the algebra from this point on in this thesis can be understood with
this redefinition in mind. To determine p(m,n), we will consider two Jacobi identities.

First consider the Jacobi identity:

0 = [[Lm, Ln] , L0] + [[Ln, L0] , Lm] + [[L0, Lm] , Ln] = (m+ n)p(n,m).

When m + n ̸= 0, we have p(m,n) = 0. Therefore, the only values to fix are p(n,−n) for n ≥ 2,
since we set p(1,−1) = 0, and p is antisymmetric.

Now consider a second Jacobi identity:

[[L−n+1, Ln] , L−1] + [[Ln, L−1] , L−n+1] + [[L−1, L−n+1] , Ln] = 0

c p(n− 1,−n+ 1) + (n− 2)c p(−n, n) = 0. (4.5)

where we have made use of our redefinition (4.4). Rearranging (4.5), we obtain a recursion relation
for p(n,−n):

p(n,−n) =
n+ 1

n− 2
p(n− 1,−n+ 1)

=
(n+ 1)n(n− 1) · · · 5 · 4

(n− 2)(n− 3)(n− 4) · · · 2 · 1
p(2,−2)

=
(n+ 1)n(n− 1) · · · 5 · 1

6(n− 2)!
p(2,−2)

=
1

6
(n+ 1)n(n− 1)p(2,−2).

Normalising p(2,−2) = − 1
2 , we have obtained

p(m,n) =
1

12
(m+ 1)m(m− 1)δm+n,0,

which completes the calculation.

We have now arrived at the Virasoro algebra Vir as the central extension of the Witt algebra.
This algebra has basis {Ln} ∪ {c} for n ∈ Z and c ∈ C with commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
(m+ 1)m(m− 1)δm+n,0, [Lm, c] = 0. (4.6)

This calculation informs us that we have two commuting copies of the Virasoro algebra in our
quantum conformal algebra.
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Let us summarise what we have achieved so far. We started by defining a conformal transfor-
mation to be one that leaves the metric invariant up to a scale (2.3). This allowed us to derive
the equation (2.5), and specialising to two dimensions, we found that the Witt algebra is an in-
finite dimensional Lie algebra that encodes infinitesimal conformal transformations. We finished
by extending this algebra to a quantum field theory, where our algebra for infinitesimal conformal
transformations is now the Virasoro algebra (4.6).
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